Acta Crystallographica Section C **Crystal Structure Communications**

ISSN 0108-2701

Potassium oxoaluminate antimonate(III), K₂[Al₂Sb₂O₇]

Christian Hirschle and Caroline Röhr*

Institut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstrasse 21, D-79104 Freiburg, Germany Correspondence e-mail: caroline@ruby.chemie.uni-freiburg.de

Received 23 July 1999 Accepted 23 September 1999

Dipotassium dialuminium diantimonate, K₂[Al₂Sb₂O₇], crystallizes in the trigonal space group $P\overline{3}m1$. The structure is isotypic with $K_2Pb_2Ge_2O_7$ and consists of $[Al_2Sb_2O_7]^{2-}$ layers containing Al^{3+} in a nearly regular tetrahedral and Sb^{3+} in a Ψ tetrahedral environment of O ligands.

Comment

The title compound (Fig. 1) is isotypic with the thallium vanadate $Tl_4V_2O_7$ (= $Tl_2^{I}[Tl_2^{I}V_2^{V}O_7]$; Jouanneaux *et al.*, 1992), the structure of which was determined from powder diffraction data. K₂Pb₂Ge₂O₇ (Bassi & Lajzerowicz, 1965) is probably isotypic, but was first described as crystallizing in the subgroup $P\overline{3}$. A symmetry check (Le Page, 1987) and transformation to the standard setting with the help of the program STRUCTURE TIDY (Gelato & Parthé, 1987) shows the isotypic nature of K₂Pb₂Ge₂O₇ and the title compound.

The Al atoms in K₂Al₂Sb₂O₇ are located on the edges of the unit cell (Fig. 2) and are coordinated by four O atoms in an approximately regular tetrahedral environment, with Al-O distances of 1.702 (1) (Al-O2, $\times 1$) and 1.762 (2) Å (Al-O1, \times 3) and O-Al-O angles ranging from 108.1 (1) to 110.9 (1)° (shown as tetrahedra in Fig. 2). Two AlO₄ tetrahedra are connected by a common O2 atom to form linear $[Al_2O_7]$ dimers with a staggered conformation of the six O1 ligands

Figure 1

ORTEP (Johnson, 1968) view of the layered $[Al_2Sb_2O_7]^{2-}$ anions in the title compound. Displacement ellipsoids are shown at the 50% probability level.

Figure 2 View of the unit cell of the title compound.

(Fig. 1). These dimers are connected by Sb³⁺ ions to form layers perpendicular to the threefold axis. The Sb atoms are coordinated by three O ligands in a Ψ -tetrahedral coordination, with an Sb-O distance of 1.936 (2) Å and an O-Sb-O angle of 91.8 (1)°. The corresponding distances and angles in CsSbO₂ (Hirschle & Röhr, 1998), Cs₄Sb₂O₅ (Hirschle & Röhr, 1999) and Na₃SbO₃ (Stöver & Hoppe, 1980) are comparable to these values. They clearly indicate the stereochemical activity of the antimony(III) lone pair, which in K₂Al₂Sb₂O₇ points towards the centre of the layered $[Al_2Sb_2O_7]^{2-}$ anions running perpendicular to the (001) direction. The anions are bounded by oxygen kagome (3.6.3.6) nets stacked in the sequence A - B. The K⁺ cations are intercalated between the $[Al_2Sb_2O_7]^{2-}$ layers, with a resulting coordination number of nine and K-O distances ranging from 2.900(2) to 2.979 (1) Å.

Experimental

а

С

Potassium (156 mg, 4.0 mmol; Merck, 99%) was reacted with a powdered mixture of Al₂O₃ (204 mg, 2.0 mmol; Merck, p.a.), Sb₂O₃ (292 mg, 1.0 mmol; Merck, p.a.) and Sb_2O_5 (323 mg, 1.0 mmol; ABCR, 99%) in a corundum crucible under an argon (99.99%) atmosphere. The mixture was heated to 1050 K at a rate of 100 K h⁻¹ and then cooled to 590 K at 5 K h^{-1} and from 590 K to room temperature at 15 K h^{-1} . The title compound crystallizes as clear thin plates of hexagonal shape. The X-ray powder patterns of the samples can be indexed with the single-crystal data of the title compound and show only weak reflections of corundum, Sb₂O₃ and additional unknown compounds.

Mo $K\alpha$ radiation
Cell parameters from 25
reflections
$\theta = 6.3-23.8^{\circ}$
$\mu = 7.250 \text{ mm}^{-1}$
T = 293 (2) K
Hexagonal plate, colourless
$0.10 \times 0.07 \times 0.03 \text{ mm}$

inorganic compounds

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: ψ scans (North *et al.*, 1968) $T_{\min} = 0.589, T_{\max} = 0.805$ 1691 measured reflections 342 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.018$ $wR(F^2) = 0.044$ S = 1.140 342 reflections 19 parameters $w = 1/[\sigma^2(F_o^2) + (0.0191P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $R_{int} = 0.085$ $\theta_{max} = 32.37^{\circ}$ $h = -8 \rightarrow 8$ $k = -8 \rightarrow 8$ $l = -12 \rightarrow 0$ 3 standard reflections frequency: 120 min intensity decay: none

 $\begin{array}{l} (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 1.28 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.81 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Extinction \ correction: \ } SHELXL97 \\ ({\rm Sheldrick, \ 1997}) \\ {\rm Extinction \ coefficient: \ } 0.014 \ (3) \end{array}$

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *HELENA* (Spek, 1993); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP* (Johnson, 1968) and *DRAWxtl* (Finger & Kroeker, 1997); software used to prepare material for publication: *SHELXL*97.

Table 1

Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$).

$U_{\rm eq} =$	$(1/3)\Sigma_i\Sigma_i$	$_{i}U^{ij}a^{i}a^{j}\mathbf{a}_{i}.\mathbf{a}_{j}$
----------------	-------------------------	---

	x	у	z	$U_{ m eq}$	
K1	1/3	2/3	0.58969 (14)	0.01743 (18)	
Sb1	1/3	2/3	0.15516 (3)	0.00913 (12)	
Al1	0	0	0.21158 (14)	0.0081 (2)	
O1	0.16874 (17)	0.83126 (17)	0.2895 (2)	0.0152 (3)	
O2	0	0	0	0.0206 (9)	

Table 2

Selected geometric parameters (Å, °).

K1 - O1 K1 - O1i Sb1 - O1ii	2.900 (2) 2.9792 (8) 1.9358 (17)	Al1–O2 Al1–O1 ⁱⁱⁱ	1.7022 (12) 1.7616 (18)
$O1^{ii}$ -Sb1-O1 ⁱⁱⁱ O2-Al1-O1 ⁱⁱⁱ $O1^{iii}$ -Al1-O1 ^{iv}	91.84 (7) 110.86 (7) 108.05 (7)	$\begin{array}{l} Al1^v {-} O1 {-} Sb1 \\ Al1 {-} O2 {-} Al1^{vi} \end{array}$	125.19 (10) 180.0

Symmetry codes: (i) 1 + x - y, 1 + x, 1 - z; (ii) -x + y, 1 - x, z; (iii) 1 - y, 1 + x - y, z; (iv) -1 - x + y, -x, z; (v) x, 1 + y, z; (vi) -x, -y, -z.

We thank the Adolf-Messer-Stifung, the Deutsche Forschungsgemeinschaft and the Fonds der chemischen Industrie for financial support, and M. Idilbi for preparative work.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1259). Services for accessing these data are described at the back of the journal.

References

- Bassi, G. & Lajzerowicz, J. (1965). Bull. Soc. Fr. Mineral. Cristallogr. 88, 342–344.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Finger, L. & Kroeker, M. (1997). DRAWxtl. A Program to Make Ball-and-Stick or Polyhedral Crystal Structure Drawings. DRAWxtl Home Page, http://granite.ciw.edu/~finger/DRAWxtl.html.
- Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.
- Hirschle, C. & Röhr, C. (1998). Acta Cryst. C54, 1219-1220.
- Hirschle, C. & Röhr, C. (1999). Z. Kristallogr. Suppl. 16, 37.
- Johnson, C. K. (1968). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA. [Openwindows Version (1991) of Norimasa Yamazaki, Tokyo, Japan.]
- Jouanneaux, A., Joubert, O., Evain, M. & Ganne, M. (1992). Powder Diffraction, 7, 206-211.
- Le Page, Y. (1987). J. Appl. Cryst. 20, 264-269.
- North, A. C. T, Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Spek, A. L. (1993). HELENA. Program for Reduction of CAD-4 Data. University of Utrecht, The Netherlands.
- Stöver, H.-D. & Hoppe, R. (1980). Z. Anorg. Allg. Chem. 468, 137-147.