Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

Potassium oxoaluminate antimonate(III), $\mathrm{K}_{2}\left[\mathrm{Al}_{2} \mathbf{S b}_{2} \mathrm{O}_{7}\right]$

Christian Hirschle and Caroline Röhr*

Institut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstrasse 21, D-79104 Freiburg, Germany
Correspondence e-mail: caroline@ruby.chemie.uni-freiburg.de
Received 23 July 1999
Accepted 23 September 1999
Dipotassium dialuminium diantimonate, $\mathrm{K}_{2}\left[\mathrm{Al}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}\right]$, crystallizes in the trigonal space group $P \overline{3} m 1$. The structure is isotypic with $\mathrm{K}_{2} \mathrm{~Pb}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ and consists of $\left[\mathrm{Al}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}\right]^{2-}$ layers containing Al^{3+} in a nearly regular tetrahedral and Sb^{3+} in a Ψ tetrahedral environment of O ligands.

Comment

The title compound (Fig. 1) is isotypic with the thallium vanadate $\mathrm{Tl}_{4} \mathrm{~V}_{2} \mathrm{O}_{7}\left(=\mathrm{Tl}_{2}{ }^{\mathrm{I}}\left[\mathrm{Tl}_{2}{ }^{\mathrm{I}} \mathrm{V}_{2}{ }^{\mathrm{V}} \mathrm{O}_{7}\right]\right.$; Jouanneaux et al., 1992), the structure of which was determined from powder diffraction data. $\mathrm{K}_{2} \mathrm{~Pb}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ (Bassi \& Lajzerowicz, 1965) is probably isotypic, but was first described as crystallizing in the subgroup $P \overline{3}$. A symmetry check (Le Page, 1987) and transformation to the standard setting with the help of the program STRUCTURE TIDY (Gelato \& Parthé, 1987) shows the isotypic nature of $\mathrm{K}_{2} \mathrm{~Pb}_{2} \mathrm{Ge}_{2} \mathrm{O}_{7}$ and the title compound.

The Al atoms in $\mathrm{K}_{2} \mathrm{Al}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}$ are located on the edges of the unit cell (Fig. 2) and are coordinated by four O atoms in an approximately regular tetrahedral environment, with $\mathrm{Al}-\mathrm{O}$ distances of $1.702(1)(\mathrm{Al}-\mathrm{O} 2, \times 1)$ and $1.762(2) \AA(\mathrm{Al}-\mathrm{O} 1$, $\times 3$) and $\mathrm{O}-\mathrm{Al}-\mathrm{O}$ angles ranging from 108.1 (1) to $110.9(1)^{\circ}$ (shown as tetrahedra in Fig. 2). Two AlO_{4} tetrahedra are connected by a common O 2 atom to form linear $\left[\mathrm{Al}_{2} \mathrm{O}_{7}\right]$ dimers with a staggered conformation of the six O 1 ligands

Figure 1
ORTEP (Johnson, 1968) view of the layered $\left[\mathrm{Al}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}\right]^{2-}$ anions in the title compound. Displacement ellipsoids are shown at the 50% probability level.

Figure 2
View of the unit cell of the title compound.
(Fig. 1). These dimers are connected by Sb^{3+} ions to form layers perpendicular to the threefold axis. The Sb atoms are coordinated by three O ligands in a Ψ-tetrahedral coordination, with an $\mathrm{Sb}-\mathrm{O}$ distance of 1.936 (2) \AA and an $\mathrm{O}-\mathrm{Sb}-\mathrm{O}$ angle of $91.8(1)^{\circ}$. The corresponding distances and angles in CsSbO_{2} (Hirschle \& Röhr, 1998), $\mathrm{Cs}_{4} \mathrm{Sb}_{2} \mathrm{O}_{5}$ (Hirschle \& Röhr, 1999) and $\mathrm{Na}_{3} \mathrm{SbO}_{3}$ (Stöver \& Hoppe, 1980) are comparable to these values. They clearly indicate the stereochemical activity of the antimony(III) lone pair, which in $\mathrm{K}_{2} \mathrm{Al}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}$ points towards the centre of the layered $\left[\mathrm{Al}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}\right]^{2-}$ anions running perpendicular to the (001) direction. The anions are bounded by oxygen kagome (3.6.3.6) nets stacked in the sequence $A-B$. The K^{+}cations are intercalated between the $\left[\mathrm{Al}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}\right]^{2-}$ layers, with a resulting coordination number of nine and $\mathrm{K}-\mathrm{O}$ distances ranging from 2.900 (2) to 2.979 (1) A․

Experimental

Potassium ($156 \mathrm{mg}, 4.0 \mathrm{mmol}$; Merck, 99%) was reacted with a powdered mixture of $\mathrm{Al}_{2} \mathrm{O}_{3}$ ($204 \mathrm{mg}, 2.0 \mathrm{mmol}$; Merck, p.a.), $\mathrm{Sb}_{2} \mathrm{O}_{3}$ ($292 \mathrm{mg}, 1.0 \mathrm{mmol}$; Merck, p.a.) and $\mathrm{Sb}_{2} \mathrm{O}_{5}$ ($323 \mathrm{mg}, 1.0 \mathrm{mmol}$; $\mathrm{ABCR}, 99 \%$) in a corundum crucible under an argon (99.99\%) atmosphere. The mixture was heated to 1050 K at a rate of $100 \mathrm{~K} \mathrm{~h}^{-1}$ and then cooled to 590 K at $5 \mathrm{~K} \mathrm{~h}^{-1}$ and from 590 K to room temperature at $15 \mathrm{~K} \mathrm{~h}^{-1}$. The title compound crystallizes as clear thin plates of hexagonal shape. The X-ray powder patterns of the samples can be indexed with the single-crystal data of the title compound and show only weak reflections of corundum, $\mathrm{Sb}_{2} \mathrm{O}_{3}$ and additional unknown compounds.

Crystal data

$\mathrm{K}_{2}\left[\mathrm{Al}_{2} \mathrm{Sb}_{2} \mathrm{O}_{7}\right]$
$M_{r}=487.66$
Trigonal, $P \overline{3} m 1$ 。
$a=5.6325(8)$, \AA
$c=8.045$ (2) \AA
$V=221.04(7) \AA^{3}$
$Z=1$
$D_{x}=3.664 \mathrm{Mg} \mathrm{m}^{-3}$

[^0]
Data collection

Enraf-Nonius CAD-4 diffract-	$R_{\text {int }}=0.085$
\quad ometer	$\theta_{\max }=32.37^{\circ}$
$\omega / 2 \theta$ scans	$h=-8 \rightarrow 8$
Absorption correction: ψ scans	$k=-8 \rightarrow 8$
\quad (North et al., 1968)	$l=-12 \rightarrow 0$
$T_{\min }=0.589, T_{\max }=0.805$	3 standard reflections
1691 measured reflections	frequency: 120 min
342 independent reflections	intensity decay: none

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018$
$w R\left(F^{2}\right)=0.044$
$S=1.140$
342 reflections
19 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0191 P)^{2}\right]$ where
$P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$

$$
\begin{aligned}
& R_{\text {int }}=0.085 \\
& \theta_{\max }=32.37^{\circ} \\
& h=-8 \rightarrow 8 \\
& k=-8 \rightarrow 8 \\
& l=-12 \rightarrow 0 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 120 \mathrm{~min} \\
& \text { intensity decay: none }
\end{aligned}
$$

$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=1.28 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.81 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
(Sheldrick, 1997)
Extinction coefficient: 0.014 (3)

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: HELENA (Spek, 1993); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP (Johnson, 1968) and DRAWxtl (Finger \& Kroeker, 1997); software used to prepare material for publication: SHELXL97.

Table 1
Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$.

$U_{\mathrm{eq}}=(1 / 3) \Sigma_{i} \Sigma_{j} U^{i j} a^{i} a^{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$				
	x	y	z	U_{eq}
K1	$1 / 3$	$2 / 3$	$0.58969(14)$	$0.01743(18)$
Sb1	$1 / 3$	$2 / 3$	$0.15516(3)$	$0.00913(12)$
Al1	0	0	$0.21158(14)$	$0.0081(2)$
O1	$0.16874(17)$	$0.83126(17)$	$0.2895(2)$	$0.0152(3)$
O2	0	0	0	$0.0206(9)$

Table 2
Selected geometric parameters $\left(\mathrm{A}^{\circ},^{\circ}\right)$.

K1-O1	2.900 (2)	$\mathrm{Al} 1-\mathrm{O} 2$	1.7022 (12)
$\mathrm{K} 1-\mathrm{O} 1^{\text {i }}$	2.9792 (8)	Al1-O1 ${ }^{\text {iii }}$	1.7616 (18)
$\mathrm{Sb} 1-\mathrm{O} 1^{\text {ii }}$	1.9358 (17)		
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Sb} 1-\mathrm{O} 1^{\text {iii }}$	91.84 (7)	$\mathrm{Al1}{ }^{\mathrm{v}}-\mathrm{O} 1-\mathrm{Sb} 1$	125.19 (10)
$\mathrm{O} 2-\mathrm{Al} 1-\mathrm{O}^{\text {iii }}$	110.86 (7)	$\mathrm{Al} 1-\mathrm{O} 2-\mathrm{Al1}{ }^{\text {vi }}$	180.0
$\mathrm{O} 1^{\mathrm{iii}}-\mathrm{Al1}-\mathrm{O} 1^{\text {iv }}$	108.05 (7)		

Symmetry codes: (i) $1+x-y, 1+x, 1-z$; (ii) $-x+y, 1-x, z$; (iii) $1-y, 1+x-y, z$; (iv) $-1-x+y,-x, z$; (v) $x, 1+y, z$; (vi) $-x,-y,-z$.

We thank the Adolf-Messer-Stifung, the Deutsche Forschungsgemeinschaft and the Fonds der chemischen Industrie for financial support, and M. Idilbi for preparative work.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1259). Services for accessing these data are described at the back of the journal.

References

Bassi, G. \& Lajzerowicz, J. (1965). Bull. Soc. Fr. Mineral. Cristallogr. 88, 342344.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Finger, L. \& Kroeker, M. (1997). DRAWxtl. A Program to Make Ball-andStick or Polyhedral Crystal Structure Drawings. DRAWxtl Home Page, http://granite.ciw.edu/~finger/DRAWxtl.html.
Gelato, L. M. \& Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.
Hirschle, C. \& Röhr, C. (1998). Acta Cryst. C54, 1219-1220.
Hirschle, C. \& Röhr, C. (1999). Z. Kristallogr. Suppl. 16, 37.
Johnson, C. K. (1968). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA. [Openwindows Version (1991) of Norimasa Yamazaki, Tokyo, Japan.]
Jouanneaux, A., Joubert, O., Evain, M. \& Ganne, M. (1992). Powder Diffraction, 7, 206-211.
Le Page, Y. (1987). J. Appl. Cryst. 20, 264-269.
North, A. C. T, Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1993). HELENA. Program for Reduction of CAD-4 Data. University of Utrecht, The Netherlands.
Stöver, H.-D. \& Hoppe, R. (1980). Z. Anorg. Allg. Chem. 468, 137-147.

[^0]: Mo $K \alpha$ radiation
 Cell parameters from 25 reflections $\theta=6.3-23.8^{\circ}$
 $\mu=7.250 \mathrm{~mm}^{-1}$
 $T=293$ (2) K
 Hexagonal plate, colourless $0.10 \times 0.07 \times 0.03 \mathrm{~mm}$

